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Fig. 1: Humanoid manipulation in diverse unseen scenarios. With only data collected from a single scene, our Improved
3D Diffusion Policy (iDP3) enables a full-sized humanoid robot to perform practical skills in diverse real-world environments.
The scenes are not cherry-picked. Videos are available on our website.

Abstract— Humanoid robots capable of autonomous opera-
tion in diverse environments have long been a goal for roboti-
cists. However, autonomous manipulation by humanoid robots
has largely been restricted to one specific scene, primarily
due to the difficulty of acquiring generalizable skills. Recent
advances in 3D visuomotor policies, such as the 3D Diffusion

Policy (DP3), have shown promise in extending these capabilities
to wilder environments. However, 3D visuomotor policies often
rely on camera calibration and point-cloud segmentation, which
present challenges for deployment on mobile robots like hu-
manoids. In this work, we introduce the Improved 3D Diffusion
Policy (iDP3), a novel 3D visuomotor policy that eliminates these
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constraints by leveraging egocentric 3D visual representations.
We demonstrate that iDP3 enables a full-sized humanoid robot
to autonomously perform skills in diverse real-world scenarios,
using only data collected in the lab. Videos are available at
humanoid-manipulation.github.io.

I. INTRODUCTION

Humanoid robots capable of performing diverse tasks
in unstructured environments have long been a significant
goal in the robotics community. Recently, there has been
substantial progress in the development of humanoid robot
hardware [1]–[5]. Simultaneously, visual imitation learning
methods for controlling these robots have gained popularity,
enabling them to autonomously execute complex skills [6]–
[11]. However, most of these autonomous manipulation skills
are still largely confined to a specific scenario [6]–[11],
mainly due to the restricted generalization capabilities of
visual imitation learning approaches [12]–[16].

Recent advances in 3D visuomotor policies have shown
great potential to generalize the learned skills to more
complex and diverse scenarios [17]–[21]. Among these, the
3D Diffusion Policy (DP3, [17]) is effective in a variety
of simulated and real-world tasks across different embodi-
ments. These include deformable object manipulation with
a dexterous hand [17] or a mobile arm [22], long-horizon
bi-manual manipulation [10], and loco-manipulation with a
quadrupedal robot [23]. Despite DP3’s generalizability, its
applications have been restricted to tasks performed using a
third-person view with a calibrated fixed camera, largely due
to the need for accurate camera calibration and point-cloud
segmentation, both of which are inherent challenges in 3D
visuomotor policies.

In this work, we aim to develop generalizable humanoid
robotic manipulation skills using 3D visuomotor policies. To
address the limitations of existing 3D visuomotor policies for
humanoid robots, we propose the Improved 3D Diffusion
Policy (iDP3), a novel 3D imitation learning method that
leverages egocentric 3D representations in the camera frame,
eliminating the need for camera calibration and point cloud
segmentation. Additionally, we introduce several modifica-
tions to improve the effectiveness of iDP3 significantly.

For data collection, we design a whole-upper-body tele-
operation system that maps human joints to a full-sized
humanoid robot. Unlike the common bi-manual manipula-
tion system, our teleoperation incorporates waist degrees of
freedom and active vision, greatly expanding the robot’s
operational workspace, particularly when handling tasks at
varying heights.

Through extensive real-world experiments and ablation
studies, we demonstrate that iDP3 exhibits remarkable gen-
eralization across diverse scenes and shows strong view
invariance, along with high effectiveness.

Our core contributions are summarized as follows:
• We introduce the Improved 3D Diffusion Policy (iDP3),

a 3D visuomotor policy that can be applied to any robot,
supporting both egocentric and third-person views,
while achieving high efficiency and strong generaliza-
tion abilities.

• We develop a whole-upper-body teleoperation system
for a humanoid robot, enabling efficient data collection
from humans.

• We demonstrate that our policy deployed on a humanoid
robot can successfully generalize contact-rich manipu-
lation skills to a wide range of real-world scenarios,
with data collected in a single scene.

II. RELATED WORK

A. Visuomotor Policy Learning

Classical approaches depend on state estimation to address
robotic manipulation tasks [24]. Recently, there has been a
growing trend in learning a visuomotor policy in an end-to-
end manner to solve robotics problem [12], [17], [25]–[28].
There are two primary pathways: imitation learning [12],
[15]–[21], [29]–[34] and sim-to-real reinforcement learn-
ing [35]–[44]. This work focuses on visual imitation learning,
due to its strength in completing complex, diverse, and long-
horizon tasks.

Image-based imitation learning methods, such as Diffusion
Policy [12], have achieved significant success [10], [17],
[22], [30], [45], while their limited generalization abilities
restrict their application in complex real-world environments.
Several recent works aim to address these limitations [17],
[22], [45]–[47]. Among these, the 3D Diffusion Policy (DP3,
[17]) has demonstrated notable generalization abilities and
broad applicability to diverse robotic tasks [10], [11], [22],
[23]. Nonetheless, 3D visuomotor policies are inherently de-
pendent on precise camera calibration and fine-grained point
cloud segmentation [17], [18], [21], [39], [47], which limits
their deployment on mobile platforms such as humanoid
robots. This work tackles this important problem and extends
the application of 3D visuomotor policies into a more general
setting.

Additionally, several recent works have demonstrated ca-
pabilities similar to ours. Maniwhere [37] achieves real-
world scene generalization via large-scale simulation data.
However, due to the significant sim-to-real gap, they only
show tasks like pushing in unseen scenarios, rather than
contact-rich tasks like pick and place. The Robot Utility
Model [48] also generalizes skills to the new environment
with imitation learning, while they have to use data collected
from 20 scenes for scene generalization, compared to only
1 scene we use. VISTA [47] demonstrates impressive view
generalization using view synthesis models. In contrast to
their complex pipeline, we find that our egocentric 3D
representations naturally enable robust view invariance.

B. Humanoid Robot Learning

The autonomous execution of diverse skills by humanoid
robots in complex, real-world environments has long been
a central goal in robotics. Recently, learning-based meth-
ods have shown promising progress toward this objective,
particularly in the areas of locomotion [36], [49]–[52],
manipulation [9], [11], [53], and loco-manipulation [6]–[8],
[54]. While several works have successfully demonstrated
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Fig. 2: Overview of our system. Our system mainly consists of four parts: the humanoid robot platform, the data collection
system, the visuomotor policy learning method, and the real-world deployment. For the learning part, we develop Improved
3D Diffusion Policy (iDP3) as a visuomotor policy for general-purpose robots.

humanoid locomotion in unstructured, real-world environ-
ments [36], [49], [50], manipulation skills in unseen en-
vironments remain largely unexplored [6], [8], [9]. In this
paper, we take a significant step forward by showcasing how
the repurposed 3D visuomotor policy framework enables
humanoid robots to perform manipulation tasks in unseen
real-world scenes.

III. IMPROVED 3D DIFFUSION POLICY

3D Diffusion Policy (DP3, [17]) is an effective 3D visuo-
motor policy that marries sparse point cloud representations
with diffusion policies. Although DP3 has shown impressive
results across a wide range of manipulation tasks, it is
not directly deployable on general-purpose robots such as
humanoid robots or mobile manipulators due to its inherent
dependency on precise camera calibration and fine-grained
point cloud segmentation. Furthermore, the accuracy of DP3
requires further improvements for effective performance in
more complex tasks. In the following, we detail several mod-
ifications to achieve targeted improvements. The resulting
improved algorithm is termed as the Improved 3D Diffusion
Policy (iDP3).
Egocentric 3D Visual Representations. DP3 leverages a
3D visual representation in the world frame, enabling easy
segmentation of the target object [17], [53]. However, for
general-purpose robots like humanoids, the camera mount
is not fixed, making camera calibration and point cloud
segmentation impractical. To tackle this problem, we propose
directly using the 3D representation from the camera frame,
as shown in Figure 3. We term this class of 3D representa-
tions as egocentric 3D visual representations.
Scaling Up Vision Input. Leveraging egocentric 3D visual
representations presents challenges in eliminating extraneous
point clouds, such as backgrounds or tabletops, especially
without relying on foundation models. To mitigate this, we
propose a straightforward but effective solution: scaling up
the vision input. Instead of using standard sparse point sam-
pling as in previous systems [17], [22], [53], we significantly
increase the number of sample points to capture the entire
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Fig. 3: iDP3 utilizes 3D representations in the camera
frame, while the 3D representations of other recent 3D
policies including DP3 [17] are in the world frame, which
relies on accurate camera calibration and can not be extended
to mobile robots.

scene. Despite its simplicity, this approach proves to be
effective in our real-world experiments.
Improved Visual Encoder. We replace the MLP visual
encoder in DP3 with a pyramid convolutional encoder. We
find that convolutional layers produce smoother behaviors
than fully-connected layers when learning from human data,
and incorporating pyramid features from different layers
further enhances accuracy.
Longer Prediction Horizon. The jittering from human
experts and the noisy sensors exhibit much difficulty in
learning from human demonstrations, which causes DP3 to
struggle with short-horizon predictions. By extending the
prediction horizon, we effectively mitigate this issue.
Implementation Details. For the optimization, we train 300
epochs for iDP3 and all other methods with AdamW [55].
For the diffusion process, we use 50 training steps and
10 inference steps with DDIM [56]. For the point cloud
sampling, we replace farthest point sampling (FPS) used in
DP3 [17] with a cascade of voxel sampling and uniform
sampling, which ensures the sampled points cover the 3D
space with a faster inference speed.



IV. HUMANOID MANIPULATION WITH IMPROVED 3D
DIFFUSION POLICY

In this section, we present our real-world imitation learn-
ing system deployed on a full-sized humanoid robot. An
overview of the system is provided in Figure 2.

A. Platform

Humanoid Robot. We use Fourier GR1 [5], a full-sized
humanoid robot, equied with two Inspire Hands [57]. We
enable the whole upper body {head, waist, arms, hands},
totaling 25 degrees-of-freedom (DoF). We disable the lower
body for stability and use a cart for movement.
LiDAR Camera. To capture high-quality 3D point clouds,
we utilize the RealSense L515 [58], a solid-state LiDAR
camera. The camera is mounted on the robot head to pro-
vide egocentric vision. Previous studies have demonstrated
that cameras with less accurate depth sensing, such as the
RealSense D435 [59], can result in suboptimal performance
for DP3 [17], [60]. It is important to note, however, that
even the RealSense L515 does not produce perfectly accurate
point clouds.
Height-Adjustable Cart. A major challenge in generaliz-
ing manipulation skills to real-world environments is the
wide variation in scene conditions, particularly the differing
heights of tabletops. To address this, we utilize a height-
adjustable cart, eliminating the need for complex whole-body
control. While this simplifies the manipulation process, we
believe our approach will perform equally well once whole-
body control techniques become more mature.

B. Data

Whole-Upper-Body Teleoperation. To teleoperate the
robot’s upper body, we employ the Apple Vision Pro (AVP,
[61]), which provides precise tracking of the human hand,
wrist, and head poses [62]. The robot uses Relaxed IK [63]
to follow these poses accurately. We also stream the robot’s
vision back to the AVP. Different from [9], we incorporate
the waist into our teleoperation pipeline, enabling a more
flexible workspace.
Latency of Teleoperation. The use of a LiDAR sensor
significantly occupies the bandwidth/CPU of the onboard
computer, resulting in a teleoperation latency of approxi-
mately 0.5 seconds. We also try two LiDAR sensors (one ad-
ditionally mounted on the wrist), which introduce extremely
high latency and thus make the data collection infeasible.
Data for Learning. We collect trajectories of observation-
action pairs during teleoperation, where observations consist
of two parts: 1) visual data, such as point clouds and images,
and 2) proprioceptive data, such as robot joint positions.
Actions are represented by the target joint positions. We
also tried using end-effector poses as proprioceptions/actions,
finding no significant difference in performance.

C. Learning and Deployment

We train iDP3 on our collected human demonstrations.
Notably, we do not rely on camera calibration or manual
point cloud segmentation as mentioned before. Therefore,

TABLE I: Efficiency of iDP3 compared to baselines. To
improve the robustness of the baselines, we have added Ran-
dom Crop and Color Jitter augmentation to all image-based
methods during training. All the methods are evaluated
with more than 100 trials, ensuring less randomness in
real-world evaluation.

Baselines DP DP DP iDP3 iDP3(❄R3M) (✶R3M) (DP3 Encoder)

1st-1 0/0 11/33 24/39 15/34 21/38
1st-2 7/34 10/28 27/36 12/27 19/30
3rd-1 7/36 18/38 26/38 15/32 19/34
3rd-2 10/36 23/39 22/34 16/34 16/37

Total 24/106 62/138 99/147 58/127 75/139

our iDP3 policy can be seamlessly transferred to new scenes
without requiring additional efforts such as calibration/seg-
mentation.

V. EXPERIMENTS AND ANALYSIS

To evaluate the effectiveness of our system, our experi-
ments will use the fundamental task of Pick&Place as the
primary benchmark for our analysis.

A. Experiment Setup

Task Description. In this task, the robot grasps a lightweight
cup and moves it aside. The challenge for humanoid robots
with dexterous hands is that the cup is similar in size to the
hands; thus, even small errors result in collisions or missed
grasps. This task requires more precision than using parallel
grippers, which can open wider to avoid collisions.
Task Setting. We train the Pick&Place task under four
settings: {1st-1, 1st-2, 3rd-1, 3rd-2}. “1st” uses an egocentric
view, and “3rd” uses a third-person view. The numbers
behind represent the number of demonstrations used for
training, with each demonstration consisting of 20 rounds
of successful execution. The training dataset is kept small
to highlight the differences between methods. The object
position is randomly sampled in a 10cm×20cm region.
Evaluation Metric. We run three episodes for each method,
each consisting of 1,000 action steps. In total, each method
is evaluated with around 130 trials, ensuring a thorough
evaluation of each method. We record both the number of
successful grasps and the total number of grasp attempts. The
successful grasp count reflects the accuracy of the policy. The
total number of attempts serves as a measure of the policy’s
smoothness, since the jittering policies tend to hang around
and have few attempts as we observe in experiments.

B. Effectiveness of iDP3

We compare iDP3 with several strong baselines, including:
a) DP: Diffusion Policy [12] with a ResNet18 encoder; b)
DP (❄R3M): Diffusion Policy with a frozen R3M [64]
encoder; c) DP (✶R3M): Diffusion Policy with a finetuned
R3M encoder; and d) iDP3 (DP3 Encoder): iDP3 using the
DP3 encoder [12]. All image-based methods use the same
policy backbone as iDP3 and Random Crop and Color Jitter
augmentations to improve robustness and generalization. The



Fig. 4: Visualization of egocentric 2D and 3D observations. This figure highlights the complexity of diverse real-world
scenes. Videos are available on our website.
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Fig. 5: Trajectories of our three tasks in the training
scene, including Pick&Place, Pour, and Wipe. We carefully
select daily tasks so that they are useful across scenes.

RGB image resolution is 224 × 224, resized from the raw
image from the RealSense camera.

The results, presented in Table I, show that iDP3 signif-
icantly outperforms vanilla DP, DP with a frozen R3M en-
coder, and iDP3 with the DP3 encoder. However, we find that
DP with a finetuned R3M is a particularly strong baseline,
outperforming iDP3 in these settings. We hypothesize that
this is because finetuning pre-trained models are often more
effective compared to training-from-scratch [26], and there
are currently no similar pre-trained 3D visual models for
robotics.

Though DP+finetuned R3M is more effective in these
settings, we find that image-based methods are overfitting
to the specific scenario and object, failing to generalize to

TABLE II: Ablation on iDP3. The results demonstrate that
removing certain key modifications from iDP3 significantly
impacts the performance of DP3, leading to either failure
in learning from human data or reduced accuracy. All the
methods are evaluated with more than 100 trials, ensuring
less randomness in real-world evaluation.

Visual Encoder 1st-1 1st-2 3rd-1 3rd-2 Total

Linear (DP3) 15/34 12/27 15/32 16/34 58/127
Conv 9/33 14/32 14/33 12/33 49/131
Linear+Pyramid 15/34 20/31 13/33 18/36 66/134
Conv+Pyramid (iDP3) 21/38 19/30 19/34 16/37 75/139

Number of Points 1st-1 1st-2 3rd-1 3rd-2 Total

1024 (DP3) 11/28 10/30 18/35 17/36 56/129
2048 17/35 13/28 17/32 18/33 65/128
4096 (iDP3) 21/38 19/30 19/34 16/37 75/139
8192 24/35 16/28 14/33 18/36 72/132

Prediction Horizon 1st-1 1st-2 3rd-1 3rd-2 Total

4 (DP3) 0/0 0/0 0/0 0/0 0/0
8 0/0 3/18 18/36 12/34 33/88
16 (iDP3) 21/38 19/30 19/34 16/37 75/139
32 9/34 20/30 14/33 12/33 55/130

wild scenarios, as shown in Section VI.
Additionally, we believe there is still room for improve-

ment in iDP3. Our current 3D visual observations are quite
noisy due to the limitations of the sensing hardware. We
expect that more accurate 3D observations could lead to opti-
mal performance in 3D visuomotor policies, as demonstrated
in simulation [17].

C. Ablations on iDP3

We conduct ablation studies on several modifications to
DP3, including improved visual encoders, scaled visual in-
put, and a longer prediction horizon. Our results, given in
Table II, demonstrate that without these modifications DP3
either fails to learn effectively from human data or exhibits
significantly reduced accuracy.

More specifically, we observe that 1) our improved visual
encoder could both improve the smoothness and accuracy
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DP fails to grasp new objects in the new scene, even with color augmentation.

DP produces jittering behaviors when grasping the training object in the new scene.

Fig. 6: Failure cases of image-based methods in new scenes. Here DP corresponds to DP (✶R3M) in Table I, which is
the strongest image-based baseline we have. We find that even added with color augmentation during training, image-based
methods still struggle in the new scene/object.

TABLE III: Capabilities of iDP3. While iDP3 maintains similar efficiency to DP (✶R3M) (abbreviated as DP), it stands out
with remarkable generalization capabilities, making it well-suited for real-world deployment. For evaluation in the new scene,
we use the kitchen scene shown in Figure 6 and unseen objects are also included. We do not test Wipe in generalization
settings since Wipe is achieved with high success rates for all methods.

Training DP iDP3

Pick&Place 9/10 9/10
Pour 9/10 9/10
Wipe 10/10 10/10

New Object DP iDP3

Pick&Place 3/10 9/10
Pour 1/10 9/10
Wipe – –

New View DP iDP3

Pick&Place 2/10 9/10
Pour 0/10 9/10
Wipe – –

New Scene DP iDP3

Pick&Place 2/10 9/10
Pour 1/10 9/10
Wipe – –

0 10 20 30 40 50 60 70 80
Training Time (minutes)

iDP3

DP

30min

80min

Fig. 7: Training time. Due to using 3D representations,
iDP3 saves training time compared to Diffusion Policy (DP),
even after we scale up the 3D vision input. This advantage
becomes more evident when the number of demonstrations
gets large.

of the policy; 2) scaled vision inputs are helpful, while the
performance gets saturated in our tasks with more points; 3)
an appropriate prediction horizon is critical, without which
DP3 fails to learn from human demonstrations.

Additionally, Figure 7 presents the training time for iDP3,
demonstrating a significant reduction compared to Diffusion
Policy. This efficiency is maintained even when the number
of point clouds increases to several times that of DP3 [17].

VI. CAPABILITIES

In this section, we show more capabilities of iDP3 on hu-
manoid robots. We also conduct more comparisons between
iDP3 and DP (✶R3M) (abbreviated as DP in this section)
and show that iDP3 is more applicable in the challenging
and complex real world. Results are given in Table III.
Tasks. We select three tasks, Pick&Place, Pour, and Wipe,
to demonstrate the capabilities of our system. We ensure that

these tasks are common in daily life and could be useful
for humans. For instance, Pour is frequently performed in
restaurants, and Wipe in cleaning tables in households.
Data. We collect 10 demonstrations for each task. For
Pick&Place task, each demonstration contains 10 trajectories
of pick&place. In each demonstration, the object poses are
randomized, limited in a region of 10cm×10cm. We do not
collect data in a larger region, since we find that a larger task
region simply requires more data [65]. Besides, collecting
large-scale data is not feasible due to the usage of AVP.
Effectiveness. As shown in Table III, both iDP3 and DP
achieve high success rates in the training environment with
the training objects.
Property 1: View Invariance. Our egocentric 3D represen-
tations demonstrate impressive view invariance. As shown
in Figure 8, iDP3 consistently grasps objects even under
large view changes, while DP struggles to grasp even the
training objects. DP shows occasional success only with
minor view changes. Notably, unlike recent works [22], [45],
[47], we did not incorporate specific designs for equivariance
or invariance.
Property 2: Object Generalization. We evaluated new
kinds of cups/bottles beside the training cup, as shown in
Figure 9. While DP, due to the use of Color Jitter augmenta-
tion, can occasionally handle unseen objects, it does so with
a low success rate. In contrast, iDP3 naturally handles a wide
range of objects, thanks to its use of 3D representations.
Property 3: Scene Generalization. We further deploy our
policy in various real-world scenarios, as shown in Figure 1.
These scenes are nearby the lab and none of the scenes



iDP3 is robust to large view changes.

DP fails to grasp training objects under large view changes.

Camera Trajectory

Object Trajectory

Fig. 8: View invariance of iDP3. We find that egocentric
3D representations are surprisingly view-invariant. Here DP
corresponds to DP (✶R3M) in Table I, which is the strongest
image-based baseline we have.

Fig. 9: Objects used in Pick&Place and Pour. We only use
the cups as the training objects, while our method naturally
handles other unseen bottles/cups.

are cherry-picked. The real world is far noisier and more
complex than the controlled tabletop environments used
in the lab, leading to reduced accuracy for image-based
methods (Figure 6). Unlike DP, iDP3 demonstrates surpris-
ing robustness across all scenes. Additionally, we provide
visualizations of both 2D and 3D observations in Figure 4.

VII. CONCLUSIONS AND LIMITATIONS

Conclusions. This work presents an imitation learning sys-
tem that enables a full-sized humanoid robot to generalize
practical manipulation skills to diverse real-world environ-
ments, trained with data collected solely in the lab. The key
is the Improved 3D Diffusion Policy (iDP3), a new 3D visuo-
motor policy for general-purpose robots. Through extensive
experiments, we demonstrate the impressive generalization
capabilities of iDP3 in the real world.
Limitations. 1) Teleoperation with AVP is easy to set up but
tiring for human teleoperators, making data scaling infeasi-
ble. 2) The depth sensor produces noisy point clouds, limiting
the performance of iDP3. 3) Collecting fine-grained manipu-
lation skills, such as turning a screw, is time-consuming due
to teleoperation with AVP. 4) We avoided using the robot’s
lower body, as maintaining balance is still challenging. In
general, scaling up high-quality data is the main bottleneck.
In the future, we hope to explore how to scale up the training
of 3D visuomotor policies with more high-quality data.
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